当前位置:首页 > 行业动态

计算机辅助建筑声学设计的基本原理与应用

发表于2010-10-19 13:02       |       46次阅读
分享到:0

计算机辅助建筑声学设计的基本原理与应用

徐学军 燕翔 白旭

 

( 清华大学建筑学院建筑物理实验室,北京,100084 )

 

  要:             建筑声学设计中,越来越多地使用计算机辅助音质设计,市场上也有许多应用软件,如丹麦的ODEON,意大利的RAMSETE,德国的EASE等等。声模拟软件可以预测室内声学参数,评价调整声学方案,计算机辅助音质设计将是未来趋势。由于声学问题本身的复杂性和计算机的局限性,目前的辅助建筑声学设计软件研究只是处于起步阶段,还不能完全代替理论分析和实践经验。因此,深入了解计算机辅助设计的原理,强调其参考价值和局限性并重,注重与建筑声学实践经验相结合,是非常重要的。论文参考了国外有关文献,阐述了计算机辅助声学设计的基本原理,希望研究成果对建筑声学设计工作者有所帮助。

关键词:声线追踪法; 虚声源法;声线束追踪法;有限元法

准确地预测房间的音质效果一直是建筑声学研究者追求的理想,谁不想在设计音乐厅图纸时就能听到她的声音效果呢?一百多年来,人们逐渐发现了一些物理指标,并揭示了它们与房间主观音质的关系,包括混响时间RT60、早期衰减时间EDT、脉冲声响应、清晰度指数等等。音质参量预估是室内声学设计的关键。目前,人们采用经典公式、缩尺比例模型、计算机模拟来预测这些参数。

室内声学的复杂性源于声音的波动性,任何一种模拟方法目前都不能获得绝对真实的结果。本文在参考研究国外计算机音质模拟文献的基础上,对室内声学的主要模拟方法进行汇编和总结,以便深入地了解计算机辅助建筑声学设计的基本原理、适用性和局限性。

 

1 比例缩尺模型模拟和计算机声场模拟

自塞宾时代起,比例缩尺模型就在室内声学中获得应用,但模型比较简单,无法得到定量结果。20世纪60年代,模拟理论、测试技术等逐渐发展完善,进行大量研究和实践后,比例模型在客观指标的测量方面已经基本达到了实用化。现在,声源、麦克风、模拟声学材料已经可以和实物对应,仪器的频带也扩展了,在模拟混响时间、声压级分布、脉冲响应等常用指标已经达到实用的精度。

比例模型的原理是相似性原理,根据库特鲁夫的推导,对于1:10的模型来讲,房间尺度缩小10倍后,如果波长同样缩短10倍,即频率提高10倍时,若模型界面上的吸声系数与实际相同,那么对应位置的声压级参量不变,时间参量缩短10倍。如10倍频率的混响时间为实际频率混响时间的1/10。然而,很难依靠物理的手段完全满足相似性的要求。空气吸收、表面吸收相似性的处理是保证模拟测量精度的关键。比例模型是现阶段所知唯一能够较好模拟室内声场波动特性的实用方法,可是由于模型制作成本较高、需要利用充氮气或干燥空气法降低高频空气吸收、模拟材料吸声特性难于控制的因素,这种方法存在很大的局限性。

随着软件技术的发展,使用计算机进行声场的模拟研究成为现实。从数学的观点来看,声音的传播由波动方程,即由Helmholtz 方程所描述。理论上,从声源到接收点的声脉冲响应可以通过求解波动方程来获得。但是,当室内几何结构和界面声学属性非常复杂时,人们根本无法获得精确的方程形式和边界条件,也不能得到有价值的解析解。如果对方程进行简化处理,所得到的结果极不精确,不能实用,完全利用波动方程通过计算机求解室内声场是不可行的。实用角度讲,使用几何声学的声线追踪法和镜像虚声源法,通过计算机程序可以获得具有一定参考程度的房间声学参数。但由于忽略了声音的波动特性,处理高频声和近次反射声效果较好,模拟声场全部信息尚有很大不足。近年来,使用基于有限元理论的方法模拟声音的高阶波动特性,在低频模拟上获得了一些进展。

 

2 几何声学模拟方法

几何声学模拟方法借鉴几何光学理论,假设声音沿直线传播,并忽略其波动特性,通过计算声音传播中能量的变化及反射到达的区域进行声场模拟。由于模拟精度不高,而且高阶反射和衍射的计算量巨大,因此,大多数情况是使用几何方法计算早期反射,而使用统计模型来计算后期混响。

 

2.1 声线追踪方法

声线追踪方法是从声源向各方向发射的“声粒子”,追踪它们的传播路径。声粒子因反射吸声不断地失去能量,并按入射角等于反射角确定新的传播方向。

为了计算接收点的声场,需要定义一个接收点周围的面积或体积区域来捕获经过的粒子。无论如何处理,都会收集到错误的声线或丢失一些应有的粒子。为了保证精度,必须有足够密的声线和足够小的接收点区域。对于一个表面积为10 m2 的房间中传播 600ms 的声音,至少需要100,000条声线。

 

 
分享到:0

我想说两句

在线客服