当前位置:首页 > 行业动态

Properties of Acoustic Plane Wave

发表于2015-12-23 10:09       |       35次阅读
分享到:0

Wavelength, Frequency and Velocity

Among the properties of waves propagating in isotropic solid materials are wavelength, frequency, and velocity. The wavelength is directly proportional to the velocity of the wave and inversely proportional to the frequency of the wave. This relationship is shown by the following equation.

             Wavelength, Frequency and Velocity relationship

The applet below shows a longitudinal and transverse wave. The direction of wave propagation is from left to right and the movement of the lines indicate the direction of particle oscillation. The equation relating ultrasonic wavelength, frequency, and propagation velocity is included at the bottom of the applet in a reorganized form. The values for the wavelength, frequency, and wave velocity can be adjusted in the dialog boxes to see their effects on the wave. Note that the frequency value must be kept between 0.1 to 1 MHz (one million cycles per second) and the wave velocity must be between 0.1 and 0.7 cm/us.

            

As can be noted by the equation, a change in frequency will result in a change in wavelength. Change the frequency in the applet and view the resultant wavelength. At a frequency of .2 and a material velocity of 0.585 (longitudinal wave in steel) note the resulting wavelength. Adjust the material velocity to 0.480 (longitudinal wave in cast iron) and note the resulting wavelength. Increase the frequency to 0.8 and note the shortened wavelength in each material.

In ultrasonic testing, the shorter wavelength resulting from an increase in frequency will usually provide for the detection of smaller discontinuities. This will be discussed more in following sections.

分享到:0

我想说两句

在线客服